Ch. 6

mmatzke
November 2020
16.1

1. $f(x)=-3 \sin (x)$

This problem was very easy and gave me no issues. I just had to plug the equation into desmos to find my answer. It was very quick.

$$
2 . f(x)=4 \sin (x)
$$

I also just had to plug the equation into desmos to get my answer. This was very quick and easy.
11. $\mathrm{y}=3 \sin (8(\mathrm{x}+4))+5$ Find the period, amplitude, horizontal shift, and midline
period:
$(8 \mathrm{x}+32)$
$2 \Pi /|b|$
$2 \Pi / 8$ divide top and bottom by 2
$\Pi / 4$
horizontal shift:
c/b
$-32 / 8$
-4
amplitude $=3$ period $=\Pi / 4$ horizontal shift $=4$ to the left midline $=5$
This question was a bit confusing at first. I am not completely sure that I did it right because it is kind of starting to make sense but I tried.
$13 . y=2 \sin (3 x-21)+4$ Find the period, amplitude, horizontal shift, and midline
period:(3x-21)
$2 \Pi /|b|$
$2 \Pi / 3$
horizontal shift:
c/b
21/3
7 to the right
amplitude $=2$ period $=2 \Pi / 3$ horizontal shift $=7$ to the right midline $=4$
This question was a bit easier because I got through the first question. I got a bit confused about calculating the horizontal shift but I figured it out.

For the 2 for 21-24 I did not understand it at all so I couldn't do them. I tried but in this case it is impossible for me.

26.2

5. $\mathrm{f}(\mathrm{x})=2 \tan (4 \mathrm{x}-32)$ find period and horizontal shift
period: ($4 \mathrm{x}-32$)
$2 \Pi /|b|$
$2 \Pi / 4$ Divide top and bottom by 2
$\Pi / 2$
horizontal shift:
c/b
$32 / 4$
8
period $=\Pi / 2$ horizontal shift $=8$ to the right
I really hope that I did this right but I am not really sure. I don't know how to get the answer. I will familiarize myself with this at a later.
6. $g(x)=3 \tan (6 x+42)$
period: $(6 \mathrm{x}+42)$
$2 \Pi /|b|$
$2 \Pi / 6$
$\Pi / 3$
horizontal shift:
c/b
$-42 / 6$
-7

Period $=\Pi / 3$ horizontal shift $=7$ to the left
I think I completely understand the horizontal shift. I have had a couple issues with the period and I think I am almost there.
$15 . j(x)=\tan (\Pi / 2 *)(x)$

This problem took no effort or thought because I just put it into desmos.
21.If $\tan (x)=-1.5$ then find $\tan (-x)$
you flip the sign so $\tan (-x)=1.5$
This problem was quick and easy because it was just flipping the sign.
23. If $\tan (x)=3$ then find $\tan (-x)$
$\tan (-x)=-3$
This was also really easy because it was just multiplying through the negative sign.

$$
\begin{aligned}
& \quad 27 \cdot \cot (-\mathrm{x}) \cos (-\mathrm{x})+\sin (-\mathrm{x}) \\
& (-\cot \mathrm{x})(\cos \mathrm{x})-\sin \mathrm{x} \\
& (-\cos \mathrm{x} / \sin \mathrm{x})(\cos \mathrm{x})-\sin \mathrm{x} \\
& -\left(\cos ^{2} x\right) /(\sin x)-\sin \mathrm{x} \\
& \left(-\left(\cos ^{2} x+\sin ^{2} x\right)\right) / \sin x \\
& -1 / \sin \mathrm{x} \\
& -\mathrm{csc} \mathrm{x}
\end{aligned}
$$

This one gave me a lot of trouble and I had to use the solution manual to help. I will watch videos on this to help me learn.

36.3

$1 . \sin ^{-1}(\sqrt{2} / 2)$
$\sin ^{-1}=-\Pi / 2, \Pi / 2$
$\sin ^{-1}(\sqrt{2} / 2)=\Pi / 4$
This one was a bit confusing. I still don't completely understand sine but I will study and ask my dad who is really good at this.
5. $\cos ^{-1}(1 / 2)$
$\cos ^{-1}=[0, \Pi]$
$\cos ^{-1}(1 / 2)=\Pi / 3$
This problem was a bit confusing and I don't know if I would be able to do this out on paper. I am not confident.

$$
\begin{aligned}
& 19 \cdot \sin ^{-1}[\cos (\Pi / 4)] \\
& \Pi / 4
\end{aligned}
$$

Parts of this problem were easier because of other problems but I don't think I fully grasp the subject.
$21 . \sin ^{-1}[\cos (4 \Pi / 3)]$
$\sin ^{-1}(-1 / 2)$
$4 \Pi / 3$
I am getting this concept because I am using the patterns to put the pieces together.

$4 \quad 6.4$

1. $2 \sin (\emptyset)=-\sqrt{2}$
$\sin (\emptyset)=-\sqrt{2} / 2$
$\emptyset=5 \pi / 4+2 k \pi$
$\emptyset=7 \pi / 4+2 k \pi$
Since $0 \leq \emptyset<2 \pi \emptyset=5 \pi / 4$ and $7 \pi / 4$

This question was very confusing and I had to use the solution manual.
3. $\sin (\emptyset)=1$
$(0 \leq \emptyset<2 \pi)$
$\emptyset=\pi / 2+2 k \pi$
$\emptyset=\pi / 2$
I had a few issues with set up but I think I am understanding what is happening here. I will find an explanation for it just to make sure.
9. $2 \cos (\emptyset)=\sqrt{2}$
$\cos (\emptyset)=\sqrt{2} / 2$
$\emptyset=\pi / 4+2 k \pi, 7 \pi / 4+2 k \pi$

The first steps were easy and then I got lost. I had to use the solution manual and will have to look into it more.

$$
\begin{gathered}
\text { 11. } 2 \sin (\emptyset)=-1 \\
\sin (\emptyset)=-1 / 2 \\
\emptyset=7 \pi / 6+2 k \pi, 11 \pi / 6+2 k \pi
\end{gathered}
$$

This was kind of easier because I am coming to understand a bit better.

$$
\begin{gathered}
13.2 \sin (3 \emptyset)=1 \\
\sin (3 \emptyset)=1 / 2 \\
3 \emptyset=\pi / 6+2 k \pi, 5 \pi / 6+2 k \pi \\
\pi / 18+2 k \pi / 3,5 \pi / 18+2 k \pi / 3
\end{gathered}
$$

This problem was confusing. It was hard to follow and I had to look at the solution manual.

$$
\text { 17. } 2 \cos (2 \emptyset)=1
$$

$\cos (2 \emptyset)=1 / 2$
$2 \emptyset=\pi / 3+2 k \pi, 5 \pi / 3+2 k \pi$
$\emptyset=\pi / 6+k \pi, 5 \pi / 6+k \pi$
This problem was not easy to do. I did not understand and will be working toward understanding it.
33. $7 \sin (6 x)=2$ finding the first two positive solutions
$\sin (6 x)=2 / 7$
$6 x=\sin ^{-1}(2 / 7)$
$6 \mathrm{x}=.28975+2 \mathrm{k} \pi, 6 x=\pi-.28975+2 k \pi$
$6 x-.28975$ or $6 x-\pi-.28975-2.85184$
$\mathrm{x}=0.04829$ or 0.47531
This problem was a bit confusing. I was following for about half of it. I don't really know where the numbers with the decimal points came from.
35. $5 \cos (3 x)=-3$ finding the first two positive solutions
$\cos (3 \mathrm{x})=-3 / 5$
$3 \mathrm{x}=\cos ^{-1}(-3 / 5)$
$3 \mathrm{x}=2.2143+2 \mathrm{k} \pi$, or $3 x=2 \pi-2.2143+2 k \pi$
$3 x=2.2143$ or $3 x=2 \pi-2.2143=4.0689$
$\mathrm{x}=0.7381$ or 1.3563

I am getting the hang of the process. I am only confused about where one of the numbers comes from now. I will make sure I completely understand.

$5 \quad 6.5$

7. find $\mathrm{d}(\mathrm{t})$ equation
given:63,37,5
amplitude:
63-37/2
26/2
13
midline:
$63+37 / 2$
100/2
50

Horizontal shift: $-5 / 5$ to the left
horizontal stretch factor:
$2 \pi / 24$
$\pi / 12$
$\mathrm{D}(\mathrm{t})=-13 \cos (\pi / 12(t-5))+50$

This problem was a lot to take in at first but once I broke it down it made a lot more sense. It is a bit challenging and takes a bit to take apart.

9a.find the equation for population since January=lowest
given: average $=129$ deviation $=25 \operatorname{Jan}(\mathrm{t}=0)$

